
b) For each of $v^{\prime}(4)$ and $v^{\prime}(20)$, find the value or explain why it does not exist. Indicate units of measure.
$v^{\prime}(4)$ is undefined because it is not a smooth curve at that point. $\boldsymbol{v}^{\prime}(\mathbf{2 0})=-\frac{\mathbf{5}}{\mathbf{2}} \mathrm{m} / \mathrm{sec}^{2}$

c) Let $a(t)$ be the car's acceleration at timet, in meters per second. For $0<t<24$, write a piecewise-defined function for $a(t)$.

$$
a(t)=\left\{\begin{array}{cc}
5, & 0<t<4 \\
0, & 4<t<16 \\
-\frac{5}{2}, & 16<t<24
\end{array}\right.
$$

 Mean Value Theorem guarantee a value of c for $8<c<20$ such that $v^{\prime}(c)$ is equal to this average rate of change? Why or why not? $-\frac{5}{6} \mathrm{~m} / \mathrm{sec}$
no, because $v^{\prime}(t)$ is not differentiable at time $t=16 \mathrm{sec}$.

